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Billiards Correlation Functions 
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We discuss various experiments on the time decay of velocity autocorrelation 
functions in billiards. We perform new experiments and find results which are 
compatible with an exponential mixing hypothesis first put forward by Fried- 
man and Martin (FM): they do not seem compatible with the stretched 
exponentials believed, in spite of FM and more recently of Chernov, to describe 
the mixing. The analysis leads to several byproducts: we obtain information 
about the normal diffusive nature of the motion and we consider the probability 
distribution of the number of collisions in time t,, (as tm --, oo ), finding a strong 
dependence on some geometric characteristics of the locus of the billiard 
obstacles. 
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1. BILLIARDS CORRELATION FUNCTIONS 

The  first resul ts  on  the e rgod ic i ty  of  bi l l iards go back  a b o u t  30 years, t13> 

But,  as is well k n o w n ,  e rgod ic i ty  is a very  weak,  and  in s o m e  sense, no t  t oo  

interest ing,  proper ty .  M o r e  direct  physical  m e a n i n g  is a t t ached  to the 

co r re l a t ion  func t ions  and  to their  decay  speed. 

Let  s be the sys tem phase  space,  S, the e v o l u t i o n  map ,  a n d / ~ ( d x )  the 

Liouvi l le  measure .  

In the case o f  bil l iards,  s is three d imens iona l :  a po in t  x e s is a po in t  

q ~  M,  where  M is the  bi l l iard table (see Fig. l in Sec t ion  3), i.e., a per iod ic  
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box of side 1 with a few circles of radii R~, R2,..., taken out and regarded 
as obstacles, and an angle q) ~ [0, 2n-I so that (q, ~0) represents the position 
and the velocity direction (with respect to the x axis, say) of a point mass 
moving with unit velocity and direction q~ until a collision takes place with 
the obstacles. Upon collision q~ changes according to the elastic collision 
rules (equal incidence and reflection angles). The measure l~(dx) is simply 
#(dx) =d2q dq)/(27t IMI), where IMI =area  of M. The dynamical system 
(I2, S,, #) will be called the continuous or 3D system (because it has a 
three-dimensional phase space). The average with respect to # over the 
phase space O will be denoted by the symbol ( .  >. 

An associated dynamical system is the collision system or 2D system: 
its (two-dimensional) phase space consists of points q ~ 0 M  and of the 
incidence angles oae(r~/2, 3n/2) formed by the velocity at collision and 
the outer normal to the obstacle, counted counterclockwise. We call 
(f2c, S c,/a~) the "collision dynamical system," with f2~ the phase space, S c 
the map mapping one collision ~=(s ,  0, i) to the previous collision 
~ '=  (s', ~9', i') (where i is a label for the obstacle on which the collision 
takes place, s is the arc of the obstacle point q where the collision takes 
place, counted from an arbitrarily fixed origin, and ~9 c is the collision 
angle), and/~c the invariant measure: #,.(d~) = - co s  ~ d~ ds/normalization. 
The average with respect to/~,, over the phase space f2,. will be denoted by 
( .  >,. (and no confusion should arise). 

We shall consider three types of billiards (i.e., three configurations of 
obstacles): ~ H ,  OH, and D, defined precisely below. 

By correlation decay one does not mean the behavior as t ---, oo of 

( f ( t )  f(O) ) = I I~(dx) f (S ,x)  f (x)  (1. 1 ) 

for the most general observable f, i.e., for the most general measurable func- 
tion f on phase space. One is, in fact, interested in (1.1) only for very 
special observables f On the other hand, it is clear that since the systems 
(0, S,, p) and (0~, S c,/~c) are isomorphic to Bernoulli schemes, I~11 one can 
find nasty functions f for which (1.1) approaches (f>2 as slowly as one 
wishes (by those who care about such wishes). 

The class (almost exhaustive) of interesting observables and related 
quantities ~s g~ven in the following list. 

1. The x component of the velocity v~ = cos q~ in the dynamical system 
(12, S,, p), leading to the velocity autocorrelationfunction: 

C(t) = <vx(t) vx(O)> (1.2) 

where vx(t) is the velocity at time t of an initial datum with velocity vx(O). 
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2. The x component of  the collision velocity, in the collision dynamical 
system (12c, Sc, pc), vcx=cosqh where q~=,9-q~q,q~q being the angle 
between the normal at the collision point q and the x axis ( -7t/2 ~< ~0q ~< n/2). 
This observable leads to the collision velocity autocorrelation function: 

Co(n) = (vex(n)  vex(0)),, (1.3) 

where vc.,.(n) is the velocity at the nth collision of an initial datum with 
velocity v,.x(0). 

3. The transverse velocity autocorrelation, given, with obvious nota- 
tions, by 

cm(t) = (vx(t) v.,,(O)) (1.4) 

Other related quantities are: 

4. The square displacements s(t) and so(n), associated with the 
billiard and the collision systems, respectively, defined by 

s(t) = (xZ(t) ) - 4  fo dr Io dr' (vx(r) vx(r') ) 

s,.(n)= (x2(n) )c, D =  l im s(t) 
(1.5) 

where x(t),x(n) are two-dimensional vectors which are measured by 
unfolding on the plane the periodic box into all its images, and by thinking 
of the motion to as taking place, without periodic boundary conditions, 
but in the full plane, among the periodic lattice of scatterers generated by 
the obstacle images. In this case it is clear that D can be called the diffusion 
coefficient and the mean square displacement is, with the above notations, 
Dt [hence, for the purpose of comparison with ref. 2, our diffusion coef- 
ficient D is related to the one, which we call Do, in ref. 2, Eq. (1.9), by 
D=24 /D01. 

5. The number of collisions v,,,(x) undergone by the motion starting 
at x in the time t,,. This is a random quantity if x is chosen randomly 
with distribution p (or #,.); then we can ask the value of the probability 
distribution: 

1 
d~(z) = lim p r o b ( ( v , m - ( v , m ) ) t T ' ~ ( z , z + f z ) )  

t m ~ o ~  

(1.6) 

where (v,.,) is the average of v,m(x) over x and ct > O. 
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The theoretical analysis of the above quantities started becoming at 
least conceivable after the work of Bunimovitch and Simon r about 
13 years ago. 

The possibility of constructing a symbolic dynamics representation of 
the billiard motion r permitted one to obtain the first upper bounds of the 
decay of C,.(n). 

The bounds have been studied in the OH case (defined precisely below) 
and have the form 

If(t)[ <~ae -h~'/'~ or ICc(n)l ~<e -b"  (1.7) 

for some e > 0  (small), a, b > 0 ,  where only the second bound is really 
proved in ref. 5. 

The above (1.7) is just an upper bound and, very soon after ref. 5, the 
matter started being investigated numerically. The first results seemed to 
suggest that C(t) really did behave, on the sequence of times where the 
local maxima of IC(t)l are achieved, as a stretched exponential with e 
ranging between 0.4 and 0.8, depending on the scatterer geometry r [a 
stretched exponential is a function of t or n of the form (1.7) and e is called 
the stretching], with the notable exception of Friedman and Martin, 19~ who 
clearly stated that, in the OH case (see below), their results indicated an 
exponential decay of the sequence of local maxima, consistent with a 
representation of C(t) as a product of a pure exponential times a periodic 
function. 

Here by geometry of the scatterers one means some rough qualitative 
property: namely whether there are collisionless trajectories (billiards with 
horizon, denoted ooH), or not (billiards without horizon, denoted OH), 
when the periodic array consisting of the images of the obstacles does not 
allow one to draw a path to infinity avoiding the obstacles, or diamond 
billiards, denoted D, in the other case where the obstacles keep the particle 
inside a bounded region. 

On the other hand, the reason why one expects a stretched exponential 
decay seems to be related to the fact that the Markov partition realizing ~51 
the symbolic dynamical representation is not finite, but countable. 

The denumerability of the Markov partition depends on the basic lack 
of smoothness of the billiard (12~, S C, #c) system dynamics: there are sharp 
discontinuities on the one-dimensional lines corresponding to collisions 
which are preceded by a tangent collision (recall that we look at the 
motion backward in time). 

If the Markov partition had been finite and the dynamical system 
smooth, the hyperbolicity of the billiards would have allowed us to 
conclude that the autocorrelation of any smooth observable f would have 
approached its n --* oo (infinite-time) limit exponentially fast, in particular, 
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Co(n) would have been exponentially decaying [and hence presumably also 
C(t), because, under such a (hypothetical) assumption, the time between 
collisions should be expected to be finite with finite moments]. This is in 
fact a general mixing property for smooth observables in smooth hyper- 
bolic systems. 114.4 i 

From the theory of the Markov partitions in ref. 5 one expects the 
partition to be "essentially finite," i.e., to consist of sets of apparently 
regular shape (irregularities breaking in two the elements of the partition, 
like tiny cuts, should be confined to very small scales), a finite number of 
which fill, for all practical purposes, the phase space. Furthermore, and 
most important, one expects to be able to construct "most" of the elements 
of the partition by examining only the first few successive collisions of 
general initial data, at least in the cases of OH and D billiards, for which 
the time between collisions is finite with all its moments. 

If this is correct, as preliminary evidence deduced from our attempts 
to devise a workable numerical algorithm to construct the Markov parti- 
tion (in the OH case) seems to suggest, one would expect that the smooth 
observables like the velocity f = vx mix exponentially fast in the OH and D 
billiards: this means that in order to see nonexponential behavior (like 
stretched exponentials or even long-time tails) one would need extremely 
accurate experiments over very many collisions. Otherwise the system 
should behave as a normal hyperbolic system without singularities. This is 
essentially our point of view (it could be called a "conjecture," but we 
refrain from formalizing it). 

In the case of ooH billiards, the same remarks should apply to the 
collision correlations, i.e., the correlations in the 2D collision dynamical 
system, even though the expected time between collisions has divergent 
moments of any order >/2. The correlations in the 3D dynamical system 
will have slow time decay ~2~ as a consequence of the fact that there is also 
an infinite expectation value for the time of the first collision (as the initial 
velocities generating motions not experiencing collisions before a time t are 
those in contained in an angle of order t - l ) .  Note, however, that such a 
long-time tail might become visible only for t so large as to be not observ- 
able (with the present computer tools): and in fact this appears to be the 
case (see below). 

The above picture seems in sharp contrast with most of the existing 
numerical experiments, with the exception of ref. 9. It does, however, agree 
with the theoretical work of Chernov, ~7~ where a similar, but far simpler, 
nonsmooth hyperbolic system has been considered and exponential time 
decay of the correlations has been shown, in spite of the nonexistence of 
finite Markov partitions. The results of ref. 7 led Chernov to conjecture  
(independently) the exponential decay for the billia collision system as well. 

822/76/I-2-37 
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Having developed large sets of data, and seeing as still quite far away 
the development of a numerical construction of a Markov partition, we 
thought that it would be useful to use our data to check the consequences 
of the above viewpoint on the correlation decay. Therefore we undertook 
a few extra experiments to see how strong the evidence was for stretched 
exponentials, and if one could confirm the important results of ref. 9, which 
have not received their deserved attention: unfortunately, we became aware 
of this work too late for using exactly their triangular lattice configurations 
and to perform a detailed quantitative comparison. Our attempts at con- 
structing Markov partitions had already led us to special billiard con- 
figurations which are not exactly the one of ref. 9. Our work (undertaken 
about 8 years after ref. 9) contains better statistics (as computers are 
larger), but is compatible with theirs. 

It should, however, be made clear at the start that in the absence of  
rigorous asymptotics it is only possible to check if the experimental results 
are compatible with some a priori given function describing the decay. Thus 
it makes sense to test whether the experimental results can be fitted with 
a function of the form e-"'f(wt) with f periodic. This implies that the 
successive maxima are placed on one or more parallel straight lines on a 
logarithmic plot. Of course one could test more complicated functional 
dependences (e.g., quasiperiodic, asymptotically quasiperiodic, or stretched 
exponential times a periodic function, etc.), but the best one can expect 
from (our) analysis of the experimental results is a check of compatibility 
with an assumed law. If the assumed law allows for many parameters, it is 
likely to give apparently better results; for instance, a fit with e-~'f(wt) 
and f periodic could give slightly better fit than one with ct = 1: this can be 
interpreted if, for instance, the best fit over (a, ct) yields ct close to 1, to 
mean that ~ is actually 1 a n d f ( t )  is close to periodic, with some small non- 
periodic corrections. 

This difficulty with the analysis of experimental data is particularly 
evident in the case of the collision correlation function, C,.(n), where the 
observations can only be made on integer values of the argument and even 
a periodic law would not necessarily yield data lying on parallel lines on 
a logarithmic plot. 

The following description of our experimental results seems to confirm 
the findings of ref. 9 and provides, in our opinion, further evidence for a 
purely exponential time decay of the correlation functions C(t), Co(n) as 
well as a diffusive behavior of the motion (unfolded among the lattice of 
the images of the scatterers) when the scatterers do not confine the motion 
to a finite region (billiards ooH or OH, i.e., nondiamond billiards). There 
are some puzzling features that we could not resolve (see comments to 
Fig. 6). As a byproduct we studied also: 
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1. The distribution of the number of collisions in a given time t,,, for 
t,, large, finding qualitative differences between the ooH billiards 
and the OH or diamond billiards. 

2. The diffusion phenomena in the ooH and the OH cases. 

We shall (of course) argue that the "unexpected" exponential decay of 
the C(t) correlation function in the ~ H  case, and the associated diffusive 
behaviors, are an artifact, because the long-time tail is not yet visible on 
our computer experiment time scale. 

The diffusion seems "normal" (with mean square displacement of 
order t as t--* oo) in the OH case, while it is very likely t2) anomalous (or 
"superdiffusive" with mean square displacement of order t In t) in the ~ H  
case: but such an asymptotic regime does not seem to be visible at the time 
scales that we reach. 

Furthermore, in the first case the distribution of the number of colli- 
sions occurring in a given time appears to be an asymptotically Gaussian 
distribution. In the second case the distribution of the number of collisions 
appears to decay exponentially fast to the right and very sharply to the left 
of some value z o, although we again think that the latter is probably a 
short-time effect. 

Our work seems to provide evidence for exponential decay of C(t) and 
Co(n): but the precision does not rule out exponential stretching with e 
close to one. Afortiori logarithmic stretching like 

IC(t)l ~< a exp[ -b(t/to)(ln t/to)-~ (L8) 

is not ruled out either, and in fact it appears to us to be a natural 
candidate. But this can probably come out only from an analytic theory. 

The above discussion expresses numerical results obtained by 
experimenting over sequences of many collisions (more than the previous 
experiments), but still not in very large numbers (the hyperbolic nature of 
the motion prevents, even by performing double-precision computations, 
the study of more than about 20 collisions in the D case, 15 in the ooH 
case, and 10 in the OH case; see Fig. 5, for instance). What really happens 
beyond such time scales is not at present analyzable numerically, at least 
not in the sense of the present paper (and not much improvement can be 
expected in the future, even in the far future, as we are dealing with a 
chaotic system). Analytical work is here more promising, but of course 
difficult (see in particular ref. 2). 

One final comment: in order to avoid just repeating the work of ref. 9 
with better statistics we tried to organize our data in such a way that they 
could be reliably reproduced (by those interested in them), including the 
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error bars and the statistical analysis. This is explained in more detail in 
the next section, and it is the reason why we cannot consider very long 
time intervals. 

Remarks on Numerical  Experiments 

At the editor's request we add a few general thoughts on numerical 
experiments on asymptotic properties of dynamical systems. There seems 
still to be concern on the actual measurability of quantities like Lyapunov 
exponents, decay of correlations, and transport coefficients in numerical 
experiments. The problem seems to be that such quantities are defined by 
limits and "computers cannot take limits." In fact, the same argument 
could be construed for actual laboratory experiments: the latter seem to 
bother people less, as a true laboratory is far more reassuring than a 
computer, because it is older and we are used to it. It is important to stress 
that "computer experiments" are just experiments, worth attention on their 
own; and the interpretation of their results may rest on theoretical 
frameworks which are more idealized. Measuring a Lyapunov exponent on 
a computer has the same meaning as measuring the period of the orbit of 
Jupiter, or the inclination of Mars. We measure them very accurately, but 
we are not sure that the motion is actually periodic, nor that the inclina- 
tion is constant (they are no t - -bu t  they "appear to be"). But in theoretical 
mechanics there are models of planetary motions in which Jupiter is 
moving periodically, or "can," and the Martian seasons are forever as dull 
as they are now. This gives us the "concept" of period and of inclination, 
and the idea of measuring them, and of testing if they are constant. But of 
course our check of the constancy cannot be done, as our lives are too short 
(and the age of the universe is also too short). Nevertheless, we perform the 
measurements as accurately as possible and come out with precise figures. 
The figures tell us that, performing the measurements we did to measure 
the period or the inclination "as if they were well defined and constant," we 
get some definite results (by the way, this may not be so easy). 

The interpretation of the results is customarily given in such a form: 
the period of Jupiter is T . . . .  _ ... % and the average inclination of Mars is 
i = ... + ... %. Of course it is understood that they may change, or that they 
simply may not exist. But such doubt is not stated, usually; certainly not 
in the case of Mars '  inclination. Hence this means that, on the basis of 
some theoretical models such motions are possible, and the data that we 
observe are cons i s ten t  with the above values of T, i. Since the values are 
reproducible they qualify as "good data." What else could we possibly 
want? In the same sense in dynamical systems there are concepts like 
mixing, ergodicity, and Lyapunov exponents which are all asymptotic: they 
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are well defined in abstract, idealized, models. We can, however, perform 
the operations that would be necessary to measure them, get some results, 
and then call such results with the corresponding names. We cannot check, 
in measuring Jupiter's period, that it returned after the jovian year exactly 
in the same position and not 1 mm away (which could imply a double 
value of the period, and an infinite time to really check); likewise we do not 
check that the values of the Lyapunov exponents do not change by really 
going to a limit of infinite time or to twice the maximum time that we 
can reach [controlling the errors that we (think we) make]. The numbers 
that we get are the "effective" Lyapunov exponents. In fact they are a far 
more interesting quantity than the abstract, nonmeasurable, Lyapunov 
exponents: they are the ones "we would feel" if we had to interact with the 
system on the experimental time scale. The same can be said about the 
correlation functions. Of course the natural evolution of human affairs 
will perhaps make longer time scales experimentally reachable and new 
experiments to be performed. In fact it is now known that the average 
inclination of the axis of Mars is not fixed at all, it greatly moves, ran- 
domly (by about as much as 50~ with a Lyapunov exponent of about the 
inverse of 1 million years, ~2~ which means that its motion might well be 
periodic (and with zero Lyapunov exponent), but for all practical purposes 
it is not such on rather short time scales (the result emerges from computer 
experiments, but once we are finally permitted to land on Mars by the 
apparently unwilling inhabitants, we shall probably find geological evidence 
for that). 

In this paper we "measure correlations" in billiards. The deep theorems 
that are available do not give many hints, if any, on how to measure 
reliably (i.e., with an a priori  controlled error) such quantities; in some 
cases there are not even theorems concerning their very existence, not to 
speak of approximability with finite algorithms (which is the goal, or 
should it be?, of reasonable theoreticians wishing to do scientific research 
and not philosophical speculations). Hence the real definition of the quan- 
tities is the one which emerges from the experiment that we describe. The 
minimum requirement is that it should be reproducible, and as accurate as 
possible: the language in which the results are formulated is necessarily 
borrowed from some general framework of "formalism" (ergodic theory 
and billiards theory in the present case). But they are not, and cannot, be 
theorems. They are just facts that, if the experiment is meaningful, may 
give new ideas to ' the theory and form a more satisfactory picture of the 
phenomena. But it is illusory that we can ever prove any theory by an 
experiment and vice versa: it is in fact incomprehensible to us w h y  
nevertheless a close connections between reality and theory can be at all 
empirically established. It might be because of what Galileo noted as the 
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book of nature being written in mathematical characters: but books may 
not tell the truth, which in fact may just be undefined and undefinable. 
What really remains after performing an experiment is the expectation that 
others will find it interesting and useful (and this can only be if it is 
reproducible; and in spite of reproducibility it will often not be regarded as 
interesting or meaningful). 

We therefore use freely in what follows notions like correlations, 
distributions, decay, etc.: they are defined in the text, and ultimately in the 
present case by the computer program. And we tried to define dearly what 
we do, how we do estimate the errors; and we have avoided letting the 
computer just compute, trying to spare the reader the frustration that we 
have experienced many times in reading of numerical works (unquoted 
here) in which there was not enough information for reproducibility. We 
are, of course, aware that, for instance, the quantities like "diffusion coef- 
ficients" or "Lyapunov exponents" cannot in principle be measured from 
our data: but the values we provide for them are, for all practical purposes, 
the real ones in our experiment; and, if reproducible, in all experiments of 
the same kind. 

We know of no numerical experiments on billiards or other dynamical 
systems (even smooth) in which, for instance, the Lyapunov exponents 
are numerically estimated over a time longer than allowed to expand 
the roundoff error beyond the precision of a few percent (i.e., the usually 
reported errors on such exponents): up to 20 collisions in our case. There- 
fore we have limited the duration of our experiments to a few collisions: 
more data could have been collected, but we could not have reliably inter- 
preted them. For our billiards there are just not big enough computers for 
many more collisions (and there will never be, as their required size grows 
"exponentially" with the number of collisions). This is the reason it would 
be better to perform our measurements by other methods: but we know of 
no other methods for the billiards case. They might l~e developed in the 
future. We think that the pioneering age is over and computer experiments 
should be subject to no less stringent standards than "ordinary" experiments 
(because we think they are no different). Therefore error bars should be 
mandatory, the error analysis should not be left out, roundoff should not 
be ignored, etc., and random number generators should be subject to tough 
tests. Many researchers do this and we would be happy to be considered at 
least close to them. 

2. THE C O M P U T E R  EXPERIMENT 

Our system is a square with periodic boundary conditions with sides 
of unit length, a = 1. We take the center of the torus as the origin of coor- 
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dinates: (0, 0). There are a circle of radius RI and center at (0, 0) and four 
more circles with radius R2 and centers at (1/2,1/2), (1 /2 , -1 /2 ) ,  
( - I / 2 ,  -1 /2 ) ,  ( -  1/2, 1/2). Obviously only the part of the circles inside the 
torus is relevant (see Fig. 1). 

A point particle is moving freely with unit velocity, Ivl = 1, in the space 
external to the circles and hitting them elastically (conserving the modulus 
of the total momentum and the energy). 

We studied three different cases (see Fig. 1): 

(a) Billiards with infinite horizon ( ~ H ) :  R, = R 2 --- 7/20, less than 
the maximal value 4 - '  x/~, but larger than the value 1/4 con- 
sidered in ref. 2, p. 366, where the length unit is 1/x/~, as the 
square lattice of the obstacles is with side 1, while in our case it 
is 1/x/~; the velocity is, however, 1 in both cases, so that, calling 
x(t) the position at time t, it is related to the position xB(t) of 
ref. 2 by x(t)= (1/x/~) xa(t x/~). 

(b) Billiards without horizon (OH): Rl ---- 1/5, R E = 2 / 5 .  

(c) Diamond (D): Rj =R2=(5/32)1/2>4 -l x/~. 

The value for the radius chosen for the diamond case is the same as 
that of ref. 8 and will make the comparison with their results easier. 

We use the following algorithm. The initial particle position is chosen 
at random with uniform distribution from the external space left by the 
circles. We give to the particle an initial velocity vector with an angle with 
respect to the horizontal axis chosen from a uniform distribution between 
0 and 21t. We compute whether the future particle trajectory will hit a circle 

Fig. 1. 

a 

General biliard structure with scatterers of radius R~ and R2 in a box with side 
length a. 
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or a box side and, in every case, the particle is moved up to one of those 
possibilities. If the particle hits a box side, periodic boundary conditions 
are applied and if it hits a circle, we change the velocity direction according 
to the equations for an elastic collision with a surface with a given cur- 
vature. We apply the algorithm until the time of the particle evolution is 
equal to 4 units of time (an average of 20 collisions, as we shall see) and 
then we start the algorithm again. 

We do not apply molecular dynamics: the succesive collisions are 
determined by solving, on the computer, the appropriate equations for the 
geometric intersections. 

Note that for the OH and D billiards, the above experiment permits us 
to study the collision correlations without performing new experiments. In 
fact, choosing initial 3D data with distribution # automatically produces a 
distribution/a c of the first collisions. And we performed a few experiments 
measuring the collision (2D) correlation function even though they are 
very difficult to interpret (as commented upon in Section 1 ). 

For the ~ H  case, in contrast, by choosing initial 3D data it is not 
possible to produce the distribution/~c, because some collisions, in order to 
occur, require a time larger than our experiment. Therefore, in the case of 
ooH, we have also done a set of computer simulations starting with an 
initial datum which is a collision (i.e., the position is randomly chosen on 
an obstacle boundary with uniform distribution and its direction is a colli- 
sion angle 0 chosen randomly between n/2 and 3n/2 with distribution 
- c o s  0 dO). Hence in the latter case we study both the 2D system and the 
3D system. This is necessary because, as said above, for the ooH case the 
average distance between collisions in the 3D system is 0% while in the 2D 
case it is finite (although it has a divergent second moment). Therefore, a 
priori, the latter property could affect the time behavior of the macroscopic 
averages. On the other hand, it is very useful in itself to study the 2D case 
in order to compare with the most recent theoretical work on this billiard 
type (e.g., ref. 2). 

In all the graphs referring to the 3D systems the time is measured in 
units of 

r(s, ~9) ds dc 
to= ~dsdc (2.1) 

where de = - c o s  0 dO and r(s, 0) is the time between the collision (s, 9) 
and the previous one; so that t o is the theoretical average time between 
collisions (note that, by the ergodicity theorem, "31 this is exactly equal to 
the average time between collisions in the 2D collision system, as ds de is 
the invariant measure in the collision system defined at the beginning of 
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Section 1). In particular, we get t 0=0.151 .... 0.316 .... and 0.1645... for the D, 
OH, and ~ H  cases, respectively. 

The plotted functions were the average over 2 x 10 7 trajectories for the 
d iamond case, 1 x 10 7 trajectories for the ~ H  case, and up to 2.8 x 108 
trajectories for the OH case. This implies a statistical error proport ional  to 
N -  ~/2 = 2 x 10 - 4  for D, 3 x 10 -4 for ooH, and 6 x I 0 - 5  for OH. 

In order to provide reproducible data and errors, we describe in the 
Appendix our  precise definition of the type of fit we do on the data, the 
evaluation of the errors on the fitting parameters, and the criteria used to 
measure quantitatively how good different fits are. We think that our  data 
are careful enough to be reproducible, errors included. 

We were worried about  the rounding error propagat ion due to the 
system chaoticity. This error is proport ional  to s (0 )e  ~', where s(0) is the 
initial rounding e r r o r  ( 10  -16,  in our  case) and 2 is the system maximum 
Lyapunov exponent. We know from our own computer  simulation 
estimates that 2 ~ 1.03t o ~ for D, 2 ~ 1.75t o ~ for OH, and 2 ~ 1.23t o ~ for 
~ H .  The original results in the literature are, in the D case, due to ref. 1 
and our  computat ions  agree within the errors with them. 

Then, we may conclude that the statistical error dominates over the 
rounding error when t, measured in absolute units of time, is less than 4.2, 
5.2, and 3.9 for D, OH, and ~ H  cases, respectively. Therefore, in our 
computer  simulation [going up to a time (measured in absolute units) <~ 4],  
the only relevant source of errors should be the statistical ones. Computer  
simulations with longer time interval will measure hydrodynamic  long- 
time properties, i.e., time correlations between "different" initial and final 
trajectories. 

The error bars reported in the graphs are the mean square dispersions of  
each reported value added to an estimate of  the other error sources (roundoff 
propagated by chaoticity). They are always plotted, although most of  the 
times they cannot be seen because of  the graph width. 

Since we are interested in asymptotic quantities, we do not want to 
include in our fits the short-time data, as they certainly show transient 
phenomena. Therefore we decided, quite arbitrarily, to discard the data 
produced in the first two units of time measured in units of the appropriate 
Lyapunov exponents. Such a time scale, the Lyapunov time scale, is dif- 
ferent from the time scale used in the graphs [namely (2.1)]: therefore we 
marked in each graph the Lyapunov time scale by an arrow pointing at its 
value in the x axis. 

In the 3D system (i.e., continuous-t ime dynamical system) we  
measured the magnitudes at times t~ = i �9 t,,/4000 (i = I, 2 ..... 4000), where 
t,, is the measured time interval in absolute units. The computa t ion of such 



562 Garrido and Gallavotti 

3D magnitudes is the most expensive part of CPU computer time because 
for each trajectory and variable we have to perform at least 4000 operations 
mere than the usual ones for the 2D system (approximately 1500 opera- 
tions in a trajectory of 15 collisions). We represent in the corresponding 
graphs 400 points that we got by averaging locally 10 data points. The 
averaging is done only to reduce the number of data plotted and it does not 
differ appreciably from the full plot (i.e., the first is within the error bars of 
the second) which represents the data really used in our fits. The symbols 
regularly used in the plots are small black circles (or ellipses) and big 
empty ones for the 3D and 2D functions, respectively. The error bars 
appear (when visible) as vertical bars. 

3. BILLIARDS VELOCITY AUTOCORRELATIONS: 
C(t )  = (v~(O) v~( t ) )  

3 . 1 .  T h e  o o H  ( 3 D )  c a s e  

In Fig. 2 we show the ]C(t)l behavior. We see the characteristic oscilla- 
tions with monotonically decreasing amplitude. We manage to observe up 
to six or seven oscillations before the statistical errors obscure the data. We 
realized how the amplitudes decrease with an apparently regular law and the 
oscillation period seems to be constant ~ = 2.55(+0.08) to. 

1 L I ~ I I 

k. 0.8 

0.6 

- -  0 . 4  ' " ' - x  

0.2 

O0 4 8 12 

t/t o 

IH 

16 

Fig. 2. Absolute value of IC(t)[, the velocity-velocity correlation function, versus t/to for the 
ooH case. The arrow marks the Lyapunov time scale (here and in the following figures). 
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Hence we try the fit of the data with a law e-~'/'~ with f 
27t-periodic. If this is a good guess, we should be able to get a good fit 
of the data In IC(t)l, evaluated on the relative maxima points t;, with a 
function of the form -a t / to  + b, with b = ln f(wt~). If the function f is not  
too complicated, the time ti should appear  at multiples of 2rcw-t. More 
generally one could expect the maxima to occur on parallel lines of the 
form -a t / t o  + bi, with bi = In f(Tg) and 7~ separated by 2row-i. 

This is confirmed when we plot In IC(t)l versus t (see Fig. 3). We dis- 
card the points with t ~< 3to ~ 22-~ and we may fit a straight line crossing 
the last five maxima: - 0 . 3 4 ( + 0 . 0 5 ) - 0 . 3 4 5 ( + 0 . 0 0 6 ) t / t o .  This implies a 
pure exponential law behavior for the amplitude with a decay rate 
2.90(___0.05) to, apparently unrelated to the Lyapunov exponent. 

We also tried a three-parameter best fit with the stretched exponential 
fit for the maxima, getting an exponent 0.93 with error bars, which does 
not include the unit value. Of  course the fit is somewhat better and this is 
not surprising (clearly, has we allowed for two more free parameters we 
would have obtained a perfect fit; see remarks in Section 1). 

3 . 2 .  T h e  OH C a s e  

We performed an analysis similar to the above. In Fig. 4 we see that 
IC(t)L has more structure than in the ovH case due to the more complex 

IH 
0 ~_  ' I ' I ' I ' | 

- ~ .  -0.34-0.345 t/t0 1 
-2 

Q')  . , ; e', 

~ - 6  

-10 . i I I I , I 
0 4 8 12 16 

t/t o 

Fig. 3. Logarithm of the velocity-velocity correlation function absolute value, In IC(t)l, 
versus t/t o for the ooH case. The solid line is the best linear fit of the last five local 
maxima of IC(t)l. The fit starts at twice the Lyapunov time scale (see comments at the end 
of Section 2). 
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Fig. 4. Absolute value of IC(t)l, the velocity-velocity correlation function, versus t / t  o for the 
OH case. 

structure of the unit cell of the lattice of obstacles (consisting of two sub- 
lattices with circles with different radii). 

The maxima of I C(t)l have an apparently nontrivial structure and this 
suggest a e-a'#~f(wt) form of the curve with f 2n-periodic but more com- 
plicated in structure. This can be tested by a (rather severe) two-parameter 

Fig. 5. 

OH 

ok  
-2 - ~ ' ~  -0.9-0.54 t/t 0 1 

~ - 4 -  ~ / ~ 0 " 5 4 t / t 0  --[ 
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0 4 8 12 
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Logarithm of the velocity-velocity correlation function absolute value, In IC(t)l, 
versus t i t  o for the OH case with 1 x 107 trajectories. 
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fit and the maxima should lie on parallel straight lines of the form 
ati / to  + bi in a logarithmic plot. 

When we plot In IC(t)l versus t (see Fig. 5), we see that there is in fact 
such a regular behavior: there are two well-defined similar cells with three 
maxima in each one. We get the fits for the two pairs of contiguous max- 
ima: - 0 . 9 ( + 0 . 3 )  - 0.54(+0.05) t / to and - 1.2( __0.1 ) - 0.54(+0.04) t i t  o. In 
both cases the decay rate for the correlation function is 1.8(+0.1)to, 
apparently uncorrelated to the Lyapunov exponent. Note that the error 
bars, at the maxima points, become too large after t/to .~ 12. 

This experiment is very time consuming: we performed it with great 
care over a much longer time span than the others. The reason is that an 
experiment over a time scale comparable (computerwise) to the others 
would have yielded Fig. 5, which would have been quite inconclusive 
because of the error bars becoming too large after 9to (with the corre- 
sponding data not  used in the fit). On the other hand, the large number of 
relative maxima promised a very accurate test of our exponential decay 
assumption if the calculation could be pushed to the time 12to, where in 
Fig. 5 the linear law looks possible only because of the large error bars. 
The longer time experiment results allows us to reduce error bars con- 
siderably up to t "~ 12to. We reported the results also for t larger that 12to, 
when the error bars become visible, just to give an idea of how difficult it 
could be to improve the analysis (which in the present form took 3 months 
of CPU on an IBM RISC-6000, just for Fig. 6). 

Although the more refined experiment confirms and improves all the 
data of Fig. 5, the last clear maximum in Fig. 6 seems to be much higher 
than it should be in order to fit on the lower line. This might be due to 
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As in Fig. 5, with 2.8 • 108 trajectories. 
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corrections to the periodicity hypothesis or to actual stretching of the decay; 
or our definitions of errors are too generous [because, see Appendix, they 
(must) contain some elements of arbitrariness, as in (A1.6), which in such 
extreme data may require further analysis]�9 This is a point that imposes 
further care, as we could not resolve it. 

3.3.  T h e  D i a m o n d  Case  

In Fig. 7 we show IC(t)l in this case. Its structure is similar to the ~ H  
case: oscillations with decreasing amplitude with period ~ = 1.72(+0.03) to. 
In this case we have very clean (errorwise) data  up to times of order 13t/to, 
as can be seen more clearly from the logarithmic plot of Fig. 8. 

The plot of In IC(t)l versus t shows again the pure exponential 
behavior of the last eight maxima amplitudes that we fit by the equation 
(Fig. 8) 0 . 2 8 ( + 0 . 0 6 ) - 0 . 4 9 ( + 0 . 0 1 ) t / t o .  The decay rate for the correla- 
tion function is now 2.04(+0.04) to ,  again apparently unrelated to the 
Lyapunov exponent�9 As in the ~ H  case, if we try to fit a stretched 
exponential, we get an exponent 0.995 with an error which does not include 
the value 1 (see comments in Section 1 and to Fig. 4 above). 

C o m m e n t s .  There are not too many results in the literature for this 
autocorrelat ion function�9 In the ~ H  case Bouchaud and Le Doussal  ~3~ get, 
from a computer  simulation with a single trajectory with 2 x 107 collisions, 
that IC( t ) l~e  -a' for t< to  and IC( t ) l~e  -b'~ for to<t<43to .  Further- 
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Fig. 7. Absolute value of IC(t)l, the velocity-velocity correlation function, versus t/to for the 
D case. 
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Fig. 8. Logarithm of the velocity-velocity correlation function absolute value, In IC(t)l, 
versus t / t  o for the D case. The solid line is the best linear fit of the last eight local maxima 
of IC(t)l. 

more, referring to the decay found in ref. 9 of IC(t)l ~ c t - '  when t ~  ll0to, 
they remark that it is independent of R when R < 2 -3/2. They also give 
arguments for a pure exponential decay when the system dimension goes to 
infinity. There is no reference to the rich structure of C(t), clear in ref. 9, 
in the analysis of the decay. 

Friedman and Martin ~9} also found, as mentioned in the Introduction, 
a large number of important results that our experiments confirm. (1) They 
found for an "almost" triangular diamond a behavior similar to ours in 
Fig. 8 and they said explicitly that "the velocity autocorrelation function 
appears to be an exponential damped periodic function." (2) They showed 
for the OH case a rich structure for maxima and minima less ordered but 
similar to ours in Figs. 5 and 6. They said explicitly that "the curve appears 
to be bounded by an exponential envelope." (3) They did not show for the 
ooH case the regular decay that we show in Fig. 3 for short times. But they 
show a rough consistency of a power law decay as lit for long times. 

4. COLLISION VELOCITY AUTOCORRELATION: 
Cc(n)=(Vc , , ' (O)  Vcx(n)~> ~ 

The results of this section are a byproduct of the numerical results 
obtained by performing the experiments described in the previous section, 
with the exception of the ooH case. Although we do not think that they are 
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particularly significant, for the reasons explained in Section 1, we report 
them, as their study illustrates the problems on the data analysis on the 
collision systems stressed in Section 1. 

4.1. The ooH ( 3 D )  Case 

We computed the velocity autocorrelat ion function corresponding to 
the hit number n. For  large n the noise due to statistical errors is impor-  
tant. Since the computer  simulation was performed for a fixed time t,,, = 4 
(in absolute units), each trajectory may have a different number  N(n) of 
collisions for each n in time tin; the number  of data N(n) that we averaged 
to get Co(n) depends on n and so does its statistical error (because for large 
n there are large fluctuations in the number  of the sampled trajectories that 
actually experienced n collisions; see also Section 7). We find that for n > 16 
collisions the errors (which, as always, have two natures: statistical and 
dynamical) become too large to permit setting up a data analysis. 

Figure 9 shows a In ICc(n)l versus n plot. We see that there is a 
regular behavior for the even and odd n values separately. The two 
sets of values may be separately fitted by pure exponential laws as is 
shown in the figure. The fits are -1 .28(+0 .03) -0 .228(+__0 .004)n  and 
- 2 . 2 2 ( + 0 . 0 6 ) - 0 . 1 7 1 ( + 0 . 0 0 7 ) n  for the upper and lower lines, respec- 
tively. The decay rate for each set is 4.28(+0.08) and 5.8(+0.2),  respec- 
tively. Also it seems that one of the sets merges into the other when n > 15. 
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Fig. 9. In ICc(n)l versus n in the ooH (3D) case. The straight lines are the best linear fits for 
the data points crossed by the lines. 
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The latter singular behavior may be perhaps understood by the dis- 
crete nature of Cc(n). For instance, if the continuous-time function had the 
analytical form C(t)= e-a'f(wt/to), with f a periodic function with period 
w-ito, (see Section3.1), then it would seem natural to expect that the 
collision one has the form Co(n)= e-~"~(w'n). Assuming that w' is near a 
"resonance," say Wo = h/k, with h, k integers, and expanding the function f 
around Wo, we get 

In ICc(n)l = -a 'n  + ln f(won) + ( w ' -  Wo) nf'(won)/f(won ) 

Therefore, we can get k straight lines, as the function f ' / f  has period k, at 
least if (w' - wo) n is small. 

In ref. 3, Co(n) is computed by using a unique trajectory with 2 x 1 0  7 

collisions [we computed 2 x 107 trajectories with 30 collisions each (at 
least), i.e., 6 x l0 s collisions]. They fitted Co(n) = ( -  1 )n e-,n~ for 1 < n < 9 
with b=0 .86+0 .06 .  They do not mention the two branches that we 
observe in Co(n). We do not understand their results well enough to be 
able to reproduce or interpret them. 

4.2. The OH Case 

In Fig. 10 we show the In [Cc(n)[ versus n behavior. In this case there 
do not seem to exist different branches for n even and odd as they appeared 
in o H  (this could be due to the fact that the period of oscillations may be 
far from a resonant regime and therefore, on the observed scale, the 
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it t o u c h e s .  
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phenomenon is not significant enough to be appreciated). All points fit the 
line 1.1(• - 1.2( ___0.1 ) n (see Fig. 10). 

Note how in this case the interval that can be analyzed only goes up 
to n ~ 10, compared with n ~ 20 for the ooH case. That is so because the 
mean free time in this case is about twice the one for the ovH case (because 
of our choice of the geometrical parameters) and therefore the number of 
collisions with good statistics is reduced by a factor of two. Even though 
in Fig. 10 it is not shown, the data follow the rule sign(Co(n))= ( - 1 ) " .  

4.3. The D Case 

The results in this case are less clear. In Fig. 11 we show In IC~(n)l 
versus n. The data, compared with the previous cases, have fluctuating 
behavior. We get some linear fits by using different n intervals with relative 
errors in the coefficients larger than 15%. For instance, the one shown in 
Fig. 11 is - 1 . ( + 2 . ) - 0 . 5 ( + 0 . 3 )  n. We also get a three-parameter stretched 
exponential fit (see comments in Section 1 and following Fig. 2) starting the 
minimization process randomly (with the parameter values ranging 
between - 5 ,  and 5.). We found 4.0( • 0 . 9 ) -  4.1(+ 0.4)n ~176176 In order 
to compare with the non-stretched-exponential law we fix the value of the 
stretched exponent to 0.41 and we fit the remaining two-parameter func- 
tion. We get 4 . ( + 2 . ) - 4 . ( +  1.)n ~ The ratio between the goodness (see 
Appendix) of the exponential and stretched exponential behaviors is 1.1. 
Plotting in a 3D graph the error function G, which measures the accuracy 
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Fig. 11. In ICc(n)l versus n in the D case. The line is the best linear fit for the data points 
lying in the same n-interval of the line. 
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of the fits (see Appendix), as a function of the three parameters of the 
stretched exponential fit, say (ct o, ~,, ~t2), with ct 2 the stretched exponent, 
one finds that there is a path connecting the values (4.0, -4 .1 ,0 .41)  and 
( - 1 . ,  -0 .5 ,  1.) which is almost fiat, slowly going up from G=0.4281 to 
G=0.4688. We conclude that the data are by far not good enough to 
distinguish stretched exponential laws with stretching parameter ~2 
anywhere between 0.4 and 1. 

In ref. 8 this case is studied by averaging 2.5 x 105 different trajectories 
and computing the quantity r(n)=<~A(O)~A(n)>, where ~ ( n )  is the 
characteristic function of set A at time n and A is the set 

A = {(x, y, v,., v.,.lxe [0, 1/3], y e  [0, 1/2], cos(1.1)~< Vx 6 cos(0.1), 

and sin(0.1 ) ~< vy ~ sin( 1.1 ) } (4.1 ) 

where the arguments of the trigonometric functions are measured in 
radians. The data are fit to the stretched exponential r(n)= e-L4,,0,2 Two 
main points from their computer simulation are not clear enough to us: 
there is an oscillatory character in their data which they eliminate by 
using a "suitable smoothing procedure," i.e., they seem to eliminate the 
"structure" of the data (a structure that might require further analysis, as 
Figs. 3 and 8 illustrate). On the other hand, they study trajectories with 
70 collisions, and we cannot (as commented above) go beyond about 20 
collisions and still hope to control the rounding error propagation and the 
statistical error, which is too large to have good data. It would be 
necessary to know better the numerical method and data analysis actually 
used in the experiment ts~ to clarify the above matters. 

5. T H E  T R A N S V E R S E  A U T O C O R R E L A T I O N  
c r ( t )  = <Vx(O ) vy(t)> 

We also computed the transverse velocity self-correlation function for 
the ~ H  (3D) case. In Figs. 12 and 13 we plot its time behavior: the absolute 
value and the logarithm of the absolute value versus time. The amplitude of 
oscillations is two orders of magnitude smaller than in C(t) and their period 
is equal. Again, the maxima follow an exponential decay behavior. In Fig. 13 
we see again how. the maxima decay in a regular fashion and the linear fit 
of the last four maxima is -2 .27(  ___0.07)- 0.37(+0.02) t/to. The decay rate 
is equal to the one of C(t) within error bars, i.e., 2.70(+__0.15) to. 

We have also computed the cr(t) in the OH and D cases, but we d o  
not report the data (as no new information comes from them). 
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Fig. 12. 
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Absolute value of ICr(t)l, the transverse correlation function [see Eq, (1.4)], versus 
t for the ooH (3D) case. 
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6. T H E  D I F F U S I O N  C O E F F I C I E N T  A N D  s(t) = ( x Z ( t ) ) ,  
sr 

6.1. The  ooH ( 2 D  and 3 D )  case 

In Fig. 14 we show the mean square particle displacement s(t) versus 
time for the 2D and 3D systems. In both cases and for short times there 
is some structure due to the correlation with the initial condition (in par- 
ticular we see the expected parabolic behavior coming from the free motion 
when the time is near zero). Notice also how the 2D system has a larger 
mean square displacement because its mean path to the first collision is 
larger. The latter explanation seems inconsistent with the existence of 
unbounded trajectories for the 3D system. In fact, there exist trajectories 
with free paths larger than the time interval used (i.e., t,,), but their number 
is so mall that they effectively do not contribute to the averages. The 
asymptotic lines for the 2D and 3D cases are, respectively, 0.069(+0.04) + 
0.0077( + 0.0003) t/to and 0.0369( + 0.0006) + 0.00758( + 0.00004) t/to. 

Recently ref. 2 argued that for the 2D system, the mean square dis- 
placement has the superdiffusive behavior: s ( t )=  a + DBt l n ( t ) -  Dt when t 
is large enough. We tried to fit this behavior to our data, but we found 
DB--~ 0.0001to I and D-~ 0.0075to l, where the error is in the fourth signifi- 
cant digit (i.e., 100%!). That is, the time interval we are using is too small 
to detect clearly the asymptotic superdiffusive behavior. In fact, we are far 
from the asymptotic regime in order to compare with the theoretical results 
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Fig. 14. Mean square displacement s(t) versus time t for the ooH (3D and 2D) case, The 
equations are the best linear fits for the 2D and 3D data which are larger than 14t o, 
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of ref. 2. The latter remark is corroborated when we get Ds following its 
analytical expression given in ref. 2: 

1 o 
D s = - ~ o D  s(x/~ R ) (6.1) 

and 

D~ - ~ (1 - 2x) 2 (6.2) 

having converted the results to our  units (with lattice spacing 1) and R is 
the obstacle radius (in the same units). In our case it gives the value 
DB = 0.00014to 1, which is similar in order of magnitude to our computer  
simulated value. 

Figure shows so(n) versus n. The asymptotic lines for the 2D 
and 3D cases are, respectively, 0.097(+.007) +0 .0063(_ .0004)  n and 
0 .0720(+ .0007)+0 .00591(+ .00005)n .  If we fit the function so(n)= 
a'+ D'nn In (n )+  D'n + b'n-' to the data we find the same result for the a '  
and D'  parameters, with D~ zero within our  error bars. Finally, the rela- 
tion D/D' gives 1.22(+0.13)to and 1.28(+_0.011) to. The discrepancy, far 
beyond the mean square deviation, with respect to the expected result 
s(t)/sc(n) = to when t, n go to ~,(-') possibly indicates again that we are far 
from the asymptotic region. 
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Fig. 15. Mean square displacement so(n) versus the collision number n for the ooH 3D and 
2D cases. The equations are the best linear fits for the 2D and 3D data which are between 
8 and 16. 
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Fig. 16. 
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Mean square displacement s(t) versus time t for the OH case. The equation is the 
best linear fit for the data which are larger than 6to. 

6.2.  T h e  OH Case  

In  Figs. 16 and  17 we s h o w  s(t) and  so(n), respect ively.  W e  get in b o t h  

cases a s y m p t o t i c  l inear  behav io r s :  a+Dt/to with a = - 0 . 0 2 6 ( _ _ _ 0 . 0 0 3 ) ,  

D = 0 . 1 1 2 9 ( + 0 . 0 0 0 4 )  t o  ~ and  a ' = 0 . 0 2 7 ( + 0 . 0 0 1 ) ,  D ' = 0 . 1 0 7 2 ( + 0 . 0 0 0 2 ) ,  

and  then  D/D'= 1 . 0 5 3 ( + 0 . 0 0 6 ) t o .  W e  see tha t  the e r ro r  bars  do  no t  

Fig. 17. 
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Mean square displacement so(n) versus the collision number n for the OH case. The 

equation is the best linear fit for the data with n between 4 and 9. 
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include the expected exact result D/D'  = to: we think that this is because we 
are not yet in the asymptotic regime. 

Note  we do not fit the last three data points in Fig. 17. This is so 
because the time interval used (tin = 4) is relatively short and some particle 
trajectories do move long enough to experience more than eight collisions 
(i.e., they are trajectories with long free paths) and therefore they are 
relevant for the average, but they are not contributing to the final value of 
so(n) (in other words, at absolute time t,, = 4 there are trajectories which 
have not yet experienced n collisions; their number  is negligible if n ~< 9, but 
starts becoming important  if n > 9; see Fig. 21 below). 

6.3. The D Case 

In Figs. 18 and 19 we show s(t)  and so(n), respectively�9 We get the 
expected nondiffusive behavior: s(t)  and sc(n) tend to the limiting constant 
values 0.017 and 0.026, respectively. We can compare, to check the 
ergodicity, such numerical values with the ergodic averages: 

s ( + ~ ) - S d x  d ~ x  2 S d x  d~ =0.01727 .... s~( + ~ ) - S ds dc x2 - - ~ ds dc = 0.0264... (6.3) 

This is a nice check of the ergodic theorem "3~ and of  course it could 
be repeated for many other averages and used as a test of how much one 
could expect to be in an asymptotic regime. Such a test would probably be 

Fig. 18. 
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Mean square displacement s(t) versus time t for the D case. The number is the 
asymptotic exact value (see text). 
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Mean square displacement s~(n) versus the collision number n for the D case. The 
number is the asymptotic exact value (see text). 

necessary if one wanted to perform a more complete analysis of the ~ H  
and OH cases. In the D case, as we see, there are no reasons to expect 
that the asymptotic regime has not yet been reached in the observed time 
intervals. 

7. THE COLLISION N U M B E R  DISTRIBUTION: d(n; tin) 
We computed the probability distribution, d(n; tin), that the particle 

undergoes n collisions in the time interval [0, t,,] for 4, = 1, 1.5, 2, 2.5, 3, 
3.5, and 4. In Figs. 20-22 we show d(n; t,,) versus n for the ~ H  (3D), OH, 
and D cases, respectively. 

The aim of this analysis was to understand the reliability of the 
calculations for the ooH case. We also performed the same calculation for 
the OH and D cases (see below); in the latter cases the computation was 
done in order to compare with the ~ H  case. As a byproduct we could test 
in the three cases the natural hypothesis that a suitable rescaling leads to 
a Gaussian distribution of the number of collisions in a given time. 

We see that, except in the ~ H  (3D) case, the distributions look like 
gaussians and, in" each case, their structure evolves with t,, in a regular 
form. In particular, in Fig. 23 we show the averaged number of collisions 
per trajectory, <n>,,,  for all three cases and different t,,. We see how the 
linear fit is almost perfect in all cases: 0.9998( + 0.0001 ) + 6.622(___0.004) t,,, 
0.99836(+0.00008) + 6.081(+0.004) tin, and 1.0005(__+0.0004) + 
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Fig. 20. The distribution probability of the number of trajectories having n collisions in a 
time interval [0, t,,], d(n; t,,), in the aoH (3d) case for {from left to right) t , ,= 1., 1.5, 2., 2.5, 
3, 3.5, and 4. 

3 .228(+0.002)  t,, for the D, OH, and ooH cases, respectively. The inverse of 
the l inear fit slope gives in all cases the mean free time (within errors)  to 
for each case. 

In Fig. 24 we show the a lgor i thm of the dis t r ibut ion s tandard  devia t ion  
(as computed  from the da ta  in the graphs in Fig. 19), In a,m, for all three 
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Fig. 21. As in Fig. 20, for the OH case. 
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Fig. 22. As in Fig. 20. for the D case. 

cases and different t,,.  The  fit al  l n ( t , , , ) + a 2  gives ( a l ,  a 2 ) = ( 0 . 4 ( _ + 0 . 1 ) ,  
- 0 . 0 4 ( _ + 0 . 0 6 ) )  for the D case, (0.51( + 0.04),  0 .35(_+0.02))  for the ooH case, 
and (0.51(_+0.04) ,  0 .35(_+0.02))  for the OH case. 

F r o m  the above  scal ing informat ion,  it is natural  to expect  that the 
distr ibution of  the random variable z = ( n - ( n ) , m ) / a , m  defined by 
d , ( z )  = c r , , d (n ( z ) ;  t , , )  will be independent  of  t,,.  
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Fig. 23. The average number of collisions by trajectory, (n) , , ,  in a time interval [0, t,,] for 
the ooH (3D), 0H, and D cases. The dashed lines are the best linear fits of the data points. 
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Fig. 25. Scaled probability distribution d = ( z ) = a , d ( ( n ) , + a , z ; t , , )  with different t,, for 
the o H  case. ( z )  is the average values of the scaled variable and a its standard deviation. 
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As in Fig. 25, for the OH case. 

This is shown in Figs. 25-27, where we plot  all da ta  for different t,,, in 
the ~ H  (3D), OH, and D cases, respectively. 

In the ~ H  (3D) case, the scaled dis t r ibut ion,  d=(z), is not  symmetr ic  
a round  the maximum. The dis t r ibut ion right wing (i.e., from the max imum 
to n ---, ~ ) seems to have a pure exponent ia l  behavior.  The left wing has a 
very fast decay. But it seems that  the dis t r ibut ion depends  on t , , ,  indicat ing 
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Fig. 27. As in Fig. 25. for the D case. 
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that we are far from the asymptotic regime (which might still be a 
Gaussian). For the OH and D cases the scaled data distribution can be 
fitted by a Gaussian distribution, as expected from the rigorous theory, c5'6) 

APPENDIX.  FITS AND ERRORS. 
THE R A N D O M  N U M B E R  GENERATOR 

From our computer experiments we get data sets corresponding to 
averages over many dynamical trajectories, say y ( x ) =  { y(xi)} i= l.N, where 
x = {xi};= I.N is in our case an independent variable, say a set of N colli- 
sion numbers or time instants. To the latter experimental data set of points 
we want to fit a given guessed function, say f(x; a), where a =  {%},= ~.p 
is a set of arbitrary parameters. Here by fit we mean to find a set of 
parameters a* which optimizes some reasonable functional relation 
between the experimental data and the fitting function. 

In our case we use the least squares functional, i.e., 

N 

V(y(x),a)=~ [ y i - f ( x i ; a ) ]  2 (A.1) 
i = l  

The set of parameters a*(y)  is here obtained by asking that they should be 
the minima of the V function: OQ. V(y, a * ) =  0. We also define the goodness 
of our fit, G, by the average ydistance of our data to the function 
f(x; a*): G ( y ( x ) ) =  V(y(x), a*)/N. This parameter is only meaningful when 
it is compared with the one from another fit. Given many fits, the one with 
smallest G value will be called best fit (among the considered fits). 

The data have, in general, nonnegligible errors, say e = {ei}i= ,.N, due 
to the finite number of samples used in the averaging and to the rounding 
error propagation because of the system chaoticity (see comments in 
Section 2). Such errors induce errors on the parameter values. Therefore, 
a measure of the error amplitude in a*(y) is given by 

A~a*(y) = [a*(y + ~;)-- a*(y -- ~)]/2 (A.2) 

In the particular case in which the magnitude of the data error is much 
smaller than the measured value, Iei/y(xj)] <~ 1, we may expand the latter 
equation around e = O: 

N 

,6~ . (y)  = ~ cl"~(y) ~; (A.3) 
i = l  
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The coefficients cl. ") are found by expanding V(y(x) + e, a)  around a(y) and 
= 0 and they are given by 

P 

C ! . )  = _ ! 
m= 1 

where 

O - - 1 6 3  2 . . . . . .  (x,),:, V(y, a*) (A.4) 

2 Dmn = 6 3 �9 �9 V(y, a*)  
~ra ~n 

In particular for the linear fit, f (x ,  a ) =  al + a2x, the coefficients cl ~)'(2) 
are given by 

c l l ) = 2 X ( - . f l _ ~ X i )  ' C12) = 2 
NJx  

( x i - x )  (A.5) 

where 

N 

A x = ( x - 2 )  2 and x " = N  -1 ~ x"i 
i = 1  

The errors are random variables and we have to average them over 
their distribution. Since our data have come from dynamical trajectories, the 
errors may be correlated and we cannot assume that they are independent 
Gaussian distributed random variables. Therefore we empirically estimate 
an upper bound for their correlation values: 

[ (eiej )1 ~ ((•2) ( e 2 )  )1/2 e -I.,'i-xA), (A.6) 

where 2 is the corresponding Lyapunov exponent. The parameter errors in 
our analysis are defined by 

N N 

Act,,(Y) 2 = ~ ~ -ir(")r(")~i'Z'a-;'l'~'-xA-/ _,_j_ >t (A,ct2> (h.7) 
i = 1  j = l  

where 62= (e2> and their use and meaning are described entirely by the 
above comments. 

Finally a comment on our random number generator: we have used the 
so-called R250 in which a sequence of pseudo-random numbers, {X(n)}, is 
generated by the linear recursion relation X(n)= X ( n -  103).xor.X(n- 250), 
where .xor. is the logical operation exclusive or along the bits of both 
numbers, i.e., 1.xor.1 =0 ,  O.xor.O =0,  and 1.xor.O= 1. The first 250 random 
numbers are generated with a random number modulo generator." X(n)= 
16807 * X ( n -  1) mod(23t - 1 ). The recurrence period for the R250 random 
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number  is expected to be (2 j ~  1) �9 (2250- 1). We do not  have reasons to 

think that the random numbers  could be "bad"; our  results should be 
reproducible, al though their interpretat ion might be different from the one 
we give. 
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